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Optimization in Quantum Information Systems

» My background is solving difficult numerical optimization problems
arising the quantum space.
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Maximizing concurrence

» Pairwise concurrence is measured by

Cj = max{0, VA1 = VA2 = VAs = Vb,

where )\, are the (descending) eigenvalues of a density matrix relating
particles / and ;.
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where )\, are the (descending) eigenvalues of a density matrix relating
particles / and ;.

» Possible goal: Identify quantum system parameters x solving

maximize Z Gi(x)?
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Otten, Larson, Min, Wild, Pelton, Gray. Origins and optimization of entanglement in

plasmonically coupled quantum dots. Physical Review A, 2016
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Possible extensions

» Concurrence is not computably defined for odd numbers of qubits
(there are formulas, but they are hard to compute numerically).
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Possible extensions

» Concurrence is not computably defined for odd numbers of qubits
(there are formulas, but they are hard to compute numerically).

» There is a computable definition for even numbers of qubits which could
be used.

» Higher dimensional entanglement is less well understood theoretically,
but there are some special states would be interesting to try and create.
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Real-world circuit fidelities

Take an n-qubits quantum computer from IBM and run
Bernstein-Vazirani algorithm using | 5| qubits.
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Real-world circuit fidelities

Take an n-qubits quantum computer from IBM and run
Bernstein-Vazirani algorithm using | 5| qubits.
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Can we help this?

» The set of quantum circuits that can be reliably run on NISQ devices is
limited by their noisy operations and low qubit counts.
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Can we help this?

» The set of quantum circuits that can be reliably run on NISQ devices is
limited by their noisy operations and low qubit counts.

> We consider a hybrid classical /quantum computing approach
» Cuts large quantum circuits into smaller subcircuits

» Classical post-processing can then reconstruct the output of the original
circuit.

S 9 of 27



Modeling variables

1 if vertex v is in subcircuit ¢
Yve= i , YWve V,Vce C
0 otherwise
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Modeling variables

1 if vertex v is in subcircuit ¢
yV,CE{ , YveV,Vce C

0 otherwise

,Vee ElNce C

Xe,c =

{1 if edge e is cut by subcircuit ¢

0 otherwise
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Modeling variables

1 if verte is in subcircuit ¢
yVICE{O ITV X VIS | u Ircul ,VVE\/,VCEC

otherwise

., Vee ENce C

1 if edge e is cut by subcircuit ¢
Xec = .
0 otherwise

The number of qubits required to run a subcircuit is the sum of:
» The number of original input qubits

» The number of initialization qubits induced by cutting

S



Modeling variables

» The number of original input qubits is o, = ZVGV w, X Yy, Ve e C,
where w, € {0, 1,2} is the number of original input qubits directly
connected to v € V.
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Modeling variables

» The number of original input qubits is e = ., Wy X yyc,Vc € C,
where w, € {0, 1,2} is the number of original input qubits directly
connected to v € V.

» The number of initialization qubits is:
Oc = Ze:(ea,eb)GEXevC X Ye,.c, Vc € C.

» The number of measurement qubits is

O = Z Xe,c X Ye,c. Ve € C.

e:(ea,ep)EE

Consequently, the number of qubits in a subcircuit that contributes to
the final measurement of the original uncut circuit is

fe=ac+pc— O Ve e C.



Constraints

» Every vertex must be in a subcircuit
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Constraints

» Every vertex must be in a subcircuit

» The required qubits for each circuit is limited.

» Some symmetry-breaking constraints
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Objective

» The number of cuts made is

1
K= EZZXe,c:

ceCeckE

13 of 27



Objective

» The number of cuts made is

K= 3w

» The objective function for the MIP cut searcher is reconstruction time
estimator

nc C
L=45>"T]2"
c=2 j=1

which captures cost of building the full 2" probabilities for a n-qubit
uncut circuit
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Fixed-frequency quantum processor
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.\ _________________________________________
Scaling up quantum devices is a challenge

> Fixed-frequency transmons are an appealing technology due to their
long coherence times (~100 us)
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Scaling up quantum devices is a challenge

> Fixed-frequency transmons are an appealing technology due to their

long coherence times (~100 us)

» Scaling fixed-frequency architectures requires precise relative frequency

requirements.
» Want to avoid collisions in frequencies.

Hertzberg et al.,
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https://arxiv.org/pdf/2009.00781.pdf



Problem description

> A processor is “collision-free” when the various types of frequency
collisions are avoided (with some margins) determined through modeling
or experimentally
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Problem description
» A processor is “collision-free” when the various types of frequency

collisions are avoided (with some margins) determined through modeling
or experimentally

» The yield measure the number of a potentially valid quantum processor

» Chips are fabricated in batches, and they want to have at least one valid
chip per batch.
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» f; avoid the 0 — 1 transitions of J:
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Two solutions on 6-node ring

Yield for collision free sample
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Active extensions

» Accounting for qutrits

» Identifying an optimal chunk that allows for massive designs

» Trying to optimize the connectivity in the graph. (For now, just

assigning frequencies to a given architecture.)
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Maximizing Quantum Fisher Information
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Quantum Fisher information
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Quantum Fisher information

» A quantum analogue to classical Fisher information (which describes
how sensitive a model is changes in a parameter.)

» A central quantity in quantum sensing.

> Classical: for n independent sensors sensing a physical parameter, the
precision is improved O( ;).
> Quantum: the precision is improved O(2).

> For a state with density matrix p(x) = Z,’-V i [¥i) (4], the QFl is

Flo(x). H) = Zﬁw,ww

» For large N, computing the QFI can be prohibitively difficult. Many
papers maximize (upper) bounds of QFI



Mathematical fun

Example with N = 8. Take a starting point xg and a random direction
d. Compute eigen-decomposition for p(xg + a;d) and plot eigenvalues
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Mathematical fun

Instead, let’s number of the eigenvalues of p(xp). Number the
eigenvalues of p(xp + a;d), using the eigenpairs at p(xo + aj_1d)
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Further questions

> Can we get 2 p(x) for some parameters (possible for pulse parameters).
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Further questions

» Can we get di’xp(x) for some parameters (possible for pulse parameters).

» For arbitrary H, find optimal states p and hope that their
symmetries/generalizations “scale”. (Can happen.) Show improved
optimization on such H (and leave it to the physicist to find systems so
that such results “scale”.)

» Some H/p pairs may have analytic forms for their eigenpairs (but we
really need cross-products to be “nice”). What could we do in that case?

» Short time optimization vs. steady-state optimization. Are we trying to
optimize for sensing at some time t or at infinity?
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Notation

If you have a problem

minimize {f(x) : x € R"} when f(x) = h(F(x)),

> h: RP — R is known

» Smooth or nonsmooth

» Convex or nonconvex

» Has known derivative or subdifferential
» Relatively cheap to evaluate

» F:R"” — RP is relatively unknown

> Based on a simulation
» Relatively expensive to evaluate
» Stochastic

Use knowledge of h to use fewer calls to F.



Contact

Thanks for listening! Questions?

jmlarson@anl.gov

This work was supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Accelerated Research for
Quantum Computing program
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